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Probability Distributions for Discrete Random Variables



Learning Objectives

1. Define the probability mass function and illustrate its use.

2. Understand the properties of a valid PMF.

3. Interpret the PMF, and its parameters.

4. Understand the cumulative distribution function.

5. Understand the Bernoulli and geometric distributions, and their
use cases.



There is no probabilistic difference
between modelling a coin flip and a

plane crash.



Probability Distributions

▶ We know that the probability over the whole sample space is
one, P(S) = 1.

▶ A probability distribution demonstrates how the total probability
is allocated to each outcome.

▶ Can think of these being represented, visually, as a histogram.

▶ Normally, we discuss the distribution of a random variable.

▶ Discrete random variables have discrete probability distributions.

▶ Discrete probability distributions are characterized by probability mass
functions.
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Probability Mass Functions
▶ A PMF is a mathematical function that assigns a numeric value

to each outcome that a random variable X can take.

▶ Suppose X can take on values x1, x2, . . ., then the PMF is a
function where p(xi) takes a value.

▶ For the PMF to be valid we require 0 ≤ p(xi) ≤ 1 and ∑
i p(xi) = 1.

▶ In the long term, we would expect that in p(xi) proportion of
experiments, we observe the event corresponding to X = xi .

▶ Often, distributions are indexed by parameters controlling the
values the function takes on.

▶ Any distributions which differ only in the value of the parameter are
from the same family.

▶ We will often write X ∼ p(x).
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Bernoulli Distribution

▶ A random variable which can take on only values 0 or 1 always
follows a Bernoulli distribution.

▶ The PMF of a Bernoulli random variable is given by
p(x) = px(1 − p)1−x , for some parameter p.

▶ We typically refer to a 1 as a success and a 0 as a failure.
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Cumulative Distribution Functions
▶ The cumulative distribution function is a related quantity

which gives the probability that the random variable takes on a
value less than some threshold.

▶

P(X ≤ x) = FX (x) =
x∑

k=−∞
p(k).

▶ For discrete random variables, the CDF will always be a step function.
▶ We can interchange between a PMF and a CDF.
▶ To find the probability of falling in an interval,

P(a < X ≤ b) = F (b) − F (a).

▶ It will often be easier to work with a CDF rather than a PMF.
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The Geometric Distribution

▶ What would the distribution be if you wanted to count how
many flips of a coin it took until you got a heads?

▶ This is related to the Bernoulli distribution, but is not exactly
the same.

▶ We call this distribution the geometric distribution, and it is
also governed by a parameter p.

▶ The PMF of the distribution is given by p(x) = (1 − p)x−1p.
▶ X represents the number of trials until the first success is observed.
▶ Sometimes you will count non-inclusively, giving p(x) = (1 − p)xp.
▶ If we right ⌊x⌋ as the lowest integer less than or equal to x , then

FX (x) = 1 − (1 − p)⌊x⌋.
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Summary

▶ Distributions summarize the breakdown of probability values.

▶ Discrete distributions are characterized by a PMF.

▶ We can also consider the cumulative distribution function,
which will be a step function for discrete variables.

▶ The Bernoulli distribution models a single success-fail
experiment.

▶ The geometric distribution models repeated success-fail
experiments until a success is reached.
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